
A Survey on Erasure Coding Techniques for Cloud
Storage System
Kiran P. Pawar #1, R. M. Jogdand *2

#1 M.Tech, Department of Computer Science, Gogte Institute of technology,
Udyambag Belagavi, Karnataka, India

*2 Professor, Department of Computer Science ,Gogte Institute of technology,
 Udyambag Belagavi, Karnataka, India

Abstract— In the present period of cloud computing,
information look up in the cloud is being produced at a huge
rate, and in this way the cloud storage framework has gained
to be one of the key segments in cloud computing. By putting
away a huge amount of information in commodity disks in
data centres that moderates the cloud, the cloud storage
framework must think of one as question precisely: how
would we store information dependably with a high efficiency
as far as both storage overhead and data integrity? Despite
the fact that it is easy to store repeated information to tolerate
some amount of data losses, it experiences a low storage
efficiency. Traditional erasure coding techniques for example,
Reed-Solomon codes, have the capacity to accomplish a much
lower storage expense with the same level of resilience against
disks failures. Nonetheless, it brings about much higher repair
costs, also a significantly higher access latency. In this sense,
planning new coding techniques for cloud storage has picked
up a significant measure of consideration in both the scholarly
world and the industry. In this paper, we analyze the current
effects of coding techniques for cloud storage. Specifically, we
exhibit these coding techniques into two classifications:
regenerating codes and locally repairable codes. These two
types of codes meet the necessities of cloud storage along two
unique axes: reducing bandwidth and I/O overhead. We show
a review of recent advances in these two types of coding
techniques. In addition, we present the principle thoughts of
some specific coding techniques at high state, and examine
their inspirations and performance.

 Keywords— erasure coding; cloud storage; regenerating
codes; locally repairable codes.

I. INTRODUCTION

 With the less use of bandwidth and storage expenses, a
direction has been observed that driving IT companies, for
example, Google, Microsoft, and Amazon, create their
services inside data centres and allow those services to use
globally using a high-bandwidth network. This new
technology of giving services is called cloud computing.

 In the era of cloud computing, storage has not just been
an essential segment of substantial scale cloud services,
additionally been given as a virtual storage infrastructure in
a pay-as-you-go way, for example, Elastic Block Storage
(EBS) provided by Amazon [1].

 To meet the prerequisites of the huge volume of storage,
the cloud storage system needs to scale out, i.e., putting
away information in large disks. In this sense, it turns into a

big challenge for cloud storage to keep up data integrity,
because of both the huge number of disks and their
commodity nature. Despite the fact that the chances of disk
failure is a little part inside the data centres, there can in
any case be a substantial number of such failure regular
because of the more number of disks. For example [2], in a
Facebook cluster with 3000 hubs, there are commonly no
less than 20 repairs activated regular. Aside from storage
components , alternate systems in the data centre, for
example, the networking or power systems, may bring the
question of data unavailability in the data centre.

 To manage the data loss and to ensure the integrity of
data which is stored in the cloud, it is simple way to store
replicas of data in more than one disk, such that data losses
can be handled till there is no less than one replica
accessible. Then again, replicas can significantly lessen the
storage efficiency. For instance, if data are stored in a 3-
way replication, the effective storage can be no superior to

anything like
ଵ

ଷ
 of the total storage.

 In the event that the design principle is to expand the
storage efficiency without sacrificing the power to handle
disk failures, the storage system must be able to store
encoded data by erasure coding. Prior to the rise of cloud
computing, erasure coding has long been proposed to
correct errors in communication system or storage or to
delete errors. For instance, RAID 6 can make up for at most
2 disk failures using parity coding, whose storage

efficiency is at most 1 -
ଶ

௡
 where n is the number of disks

in total. Reed-Solomon codes can give much more
flexibility such that any number of disk failures under a
specific threshold can be handled. An online secure storage
as a service, utilizes Reed-Solomon codes to guarantee data
integrity, by encoding data using Reed Solomon codes after
doing the encryption of data.

 Nonetheless, two principle disadvantages traditionally
keep erasure coding from being practical and prominent in
cloud storage. Initially, to write or read data, the system has
to encode or decode data, prompting a high access latency
and low access throughput because of the CPU limit.
Second, however erasure coding stores information as
numerous coded blocks, when one coded block gets lost,
the system must get to various coded blocks that are
sufficient to recover all the information. It is evaluated that
regardless of the fact that half of the information in the

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1986

Facebook cluster are encoded, the repair traffic will saturate
the system such as network links in the cluster [2]. This
overhead makes the repair with erasure coding
exceptionally costly as far as both bandwidth for data
transfer and overhead of disk I/O. unfortunately,
applications facilitated in the cloud are more sensitive to
the performance of disk I/O ,bandwidth is dependably a
constrained asset inside the data centres subsequent to most
data centres present connection over subscription.

 To meet the prerequisites of cloud applications for
storing purpose, the configuration of new coding methods
for cloud storage has pulled in a generous measure of
enthusiasm for the research group. In this paper, we look at
recent advances of erasure coding techniques in the
connection of cloud storage. Specifically, we present
coding techniques that improve the data repair overhead in
two unique axes of design objectives: reducing the
bandwidth consumption and optimizing overhead of disk
I/O. because of the high frequency of repairing data and
the high repair of conventional erasure coding overhead,
advancements in both of these two axes fall into the
considerations to repair data.

 In the point of view of bandwidth utilization, Dimakis
et al. [3] proposed a group of regenerating codes. Taking
into account a model motivated by network coding, the
repairs of data which has coded can be displayed into a
data flow chart, with an imperative that keeps up the
capacity to handle disk failures. In light of this model, an
ideal trade-off between bandwidth and storage can be
derived, such that given the measure of information which
is stored on the disks, we can acquire an ideal lower bound
of the measure of information that ought to be exchanged at
the time of repair. In the trade-off curve, two great focuses
draw in substantially more consideration than inside
focuses, comparing to the base storage cost and the base
bandwidth cost, respectively. To accomplish these two
great focuses, number of papers proposed occurrences of
regenerating codes that either handles the disk failures
using randomised codes , or utilizing inference alignment
to build deterministic codes . Using deterministic coding,
lost data can be repaired precisely, recommending that we
can develop systematic codes to accomplish an access
latency as low as replicas. In addition, cooperative
regenerating codes make it conceivable to repair from
various disk failures with an even lower bound of
bandwidth utilization, with the help of cooperation among
participating servers.

 Regenerating codes spares bandwidth by not sending
information that are pointless to the specific newcomer. It
is required that the information sent out of suppliers must
take the relating information(i.e., the entropy) required by
the newcomer, with a specific end goal to handle disk
failures. Therefore, just with the exception of some
uncommon cases, most occurrences of regenerating codes
need to ask suppliers to send linear combinations of data
from their information to the newcomer. At the end ,
regenerating codes cannot save the disk I/O but they only
can save bandwidth. compared with traditional erasure

coding, disk I/O will even most likely be expanded with
regenerating codes. With regenerating codes, the inevitable
amount of data read from disks at the time of repair is as
yet going to be significantly more than the measure of
information kept in touch with the newcomer. The
excessive operations of disk I/O can significantly
influence the performance of general disk I/O in the data
centre.

 In this sense, a few groups of coding techniques have
been proposed to decrease disk I/O overhead at the time of
repair. Dissimilar to regenerating codes that spare the
bandwidth utilization by causing more disk I/O overhead,
every one of them feature a smaller number of disk
accessed in the repair. This feature is accomplished by
implementing that data in one disk must be repaired by data
in some certain disk. This thought will handle disk failures,
however significantly decrease the number of disks to be
visited and number of bits to be read. In this paper, we
present three representative proposals: hierarchical codes,
self-repairing codes, and simple regenerating codes. Also,
we demonstrate the major exchange off between disk
failures and disk I/O overhead.

II. ERASURE CODING AND ITS PERFORMANCE METRICS

1. Erasure coding in storage systems

 In a storage system where information are stored on a
more number of commodity disks, it is clear that disk
failures cannot be considered as just special cases, but
rather generally speaking. Along these lines, the storage
system needs to store redundancy such that when a specific
number of disks lose data, data can in any case be available
from different disks. For instance, the N-way replication,
which stores N replicas in N different disks, has the
capacity to handle at most N- 1 disk failures. Figure 1a
delineates a sample of 3-way replication, where the first
information are spread into 3 distinct disks and any one
disk has the capacity to repair or access the original data.
However, N-way replication can just accomplish a storage

efficiency of
ଵ

ே
 best case scenario. Erasure coding, on the

other hand, is able to handle the same number of disk
failures, yet with a vastly improved storage efficiency.
Among erasure coding, Maximum Distance Separable
(MDS) codes (e.g., Reed-Solomon codes [4]) accomplish
the ideal storage efficiency.

 Assume that in the storage system, data are sorted out in
the unit of data object, which may relate to a file or a fix-
sized block in diverse storage system. Accept that an data
objects can be put away onto n disks. Given k as arbitrary
number , where k < n, (n, k) MDS codes can promise to
handle at most n-k disk failures, i.e., k disks are sufficient
to get to any piece of the first data. Specifically, the data
object is encoded into n coded pieces and are consistently
dispersed into the n disks.

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1987

(a) 3-way replication

(b) (5,3) MDS codes

Fig. 1 Comparison of 3-way replication and (5,3) MDS codes.

Assume the data object size is M bits, the size of each

coded piece ought to be
ெ

௞
 bits, on the off chance that we

don't consider the information's metadata object. In this
sense, the storage efficiency of MDS codes is, best case

scenario
௞

௡
 . Contrasted with the 3-way replication as

appeared in Fig. 1b, (5,3)MDS codes can at present handle
at most 2 disk failures, while enhancing the storage
efficiency by 80%.

 To get to the data object access, the system needs to get
to k distinctive coded blocks (from k diverse blocks) and
use MDS codes for decoding algorithm to recover the first
data object. Apparently, the decoding algorithm causes an
extra access latency. To enhance the access latency, the
storage system can utilize a cache to store one replica of
the first data object as well [5].

 Recovering the entire data object for data access may
sound sensible in most cases. however, from the storage
system perspective, absolutely superfluous to recover the

entire data object in the event that we just need to repair
one lost coded block, as what we need is only a little piece
of the data object. Tragically, before the presence of
regenerating codes, all MDS codes, to our best information,
require to access in any event k disks to repair even stand
out disk, while on account of replication, to repair one
replica we just need to exchange one replica. This
prerequisite can drastically expand both disk I/O and
bandwidth overhead in a data centre and significantly
influence the storage system performance and different
applications facilitated in the cloud.

2. Performance metrics

 It has been clarified that it is insufficient to consider just
the storage efficiency and the handling against disk failures
in cloud storage systems. The performance metric that
ought to be considered when planning erasure coding for
cloud storage ought to likewise include:

Repair bandwidth. To repair a failed disk, data put away on
that disk ought to be repaired in a substitution disk. The
server with the substitution disk, called a newcomer, needs
to recover information from some current disks. In the
event that the servers that host these current disks, called
providers, send out coded blocks of raw data , the
bandwidth used to transmit the current coded blocks equals
the size of these coded blocks and then the newcomer
encodes the received data by itself to create the data which
is lost. Not with standing, if encoding operations can be
performed both on the newcomer and suppliers instead of
on the newcomer just, a much littler size of data can be
exchanged. As appeared in Fig. 2, if storage nodes stores
data are encoded by vector codes, such that each coded
block contains more than one coded fragments, the
bandwidth utilization can be spared when suppliers sends
linear combinations of their coded segments during the
repair.

 In the spearheading paper of Dimakis et al. [3], an
astonishing and promising result was demonstrated that the
bandwidth utilized as a part of the repair can be roughly as
low as the size of the repaired block by encoding operations
of suppliers and the group of erasure codes that
accomplishes the ideal bandwidth utilization during the
repair was called regenerating codes.

Repair I/O. Other than bandwidth, another performance
metric in the repair for erasure coding is disk I/O at the
partaking servers. Specifically, the writing operations are
performed just at the new comer, and the measure of
information written ought to approach the span of the
coded blocks. As the written work operations are
unavoidable, what we truly care is really the measure of
information read from disks of suppliers.

 Like the data bandwidth utilization, traditional erasure
codes will request suppliers to peruse k blocks altogether
just to repair one block. As appeared in Fig. 2, encoding
operations on suppliers cannot decrease the amount of
information read, but then just diminish the amount of

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1988

information exchanged to the newcomer, since the
fragments conveyed of suppliers are encoded from all
coded sections in suppliers, which all must be perused from
disks. Hence, new coding systems should be proposed to
enhance the disk I/O at the time of repair.

Fig. 2 Suppose that any two storage nodes suffice to recover the
first data(k=2),where every supplier stores one coded block
including two coded portions.

Fig. 3 The disk I/O amid the repair can be spared by getting to
specific coded sections or/and from specific suppliers.

 In Fig. 3,we present two illustrations of methods that can
be utilized to develop erasure codes with low disk I/O at
the time of the repair. One conceivable path is to acquire
specific coded blocks from suppliers, and consequently
other coded fragments in the same supplier won't be
encoded and subsequently won't be perused. Another
strategy is to get to specific storage nodes as suppliers, as
opposed to getting to any k storage nodes. A few groups of
erasure codes have been proposed such that when one

storage node fails, the new comer must get to information
from a little number of specific storage nodes.

Access latency. Because of the decoding operations, the
access latency of information encoded by erasure coding
must be much bigger than replicas. In any case, efficient
codes, in which the first information can be inserted into
code blocks, have the capacity to keep up a higher storage
efficiency than replicas while accomplishing a smaller
access latency, since we now just need to get to the orderly
part with no decoding operations. This interesting property
of efficient codes accompanies a high value that makes the
repair a great deal more mind boggling than non-efficient
codes, on the grounds that the repaired information ought to
be the very same as the lost information, at any rate for the
embedded unique information. In this way, the
deterministic development of codes must be considered
when outlining efficient erasure codes for cloud storage.

Storage efficiency. The storage efficiency indicates the
ratio of the first information to the real amount of
information put away on disks. in other words, given the
same amount of information, with a higher storage
efficiency we can utilize a littler amount of space of
storage to handle the same number of disk failures. MDS
codes accomplish the ideal storage efficiency, i.e., given n
and k, MDS codes can be built such that any k among all n
coded blocks are sufficient to recover the first information.
For instance, in Fig. 1, to handle two disk failures, 3M bits

must be put away with replications, while just
ହெ

ଷ
 bits are

required to store with MDS codes. On the other hand, in the
event that we decide to hold this property, it is unavoidable
to bring about high disk overhead at the time of repair [2].
Because of the diminishing costs of large volume disks, the
necessity for storage efficiency can be casual such that a
much littler number of disks are required to visit in the
repair.

 In this paper, we concentrate on the first two metrics,
which are unequivocally identified with the repair in the
storage system. Specifically, in Section3 we show the
coding procedure, called regenerating codes, that has the
capacity to accomplish the ideal bandwidth bound in the
repair. In Section 4, we audit the coding methods along the
axis of lessening the disk I/O in the repair. For every
coding system, we talk about their performance in the other
two metrics along the way.

III. TRADEOFFS BETWEEN STORAGE AND BANDWIDTH:

REGENERATING CODES

1. Information flow graph

 The trade-off in the middle to research the bandwidth
utilization in repairs with erasure coding, Dimakis et al. [3]
proposed to utilize the data flow diagram, which is an tool
utilized as a part of the network coding analysis, as a model
to describe the storage and bandwidth.

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1989

 As appeared in Fig. 4, in the data flow chart, all servers
can be classified as the source, storage nodes, and the data
collector. The source signifies the server where the
information object is started. Assume that the information
object size is M bits. In the wake of encoding, coded blocks
of α bits are scattered into n storage nodes. Particularly, the
source is represented by a vertex and a storage node is
shown by two vertices in the data flow diagram. The
amount of data stored in storage node is represented by
weight of the edge. Subsequently, after the spread, all n
storage nodes store α bits and any k of them suffice to
recover the original data object, suggesting that k α ≥ M.
A virtual vertex called information collector has the
capacity connect with any k storage nodes to recover the
first information.

 At the point when a storage node fails, a newcomer does
not interface with k accessible storage nodes, as well as d
storage nodes as suppliers (d ≥ k). Not quite the same as

Fig. 4 A delineation of the data flow chart that relates to(4,2)MDS
codes. This figure was firstly appeared in Ref. [3].

traditional MDS codes, the newcomer can get β bits from
every supplier, β ≤ α, shown by the edge's heaviness
between the supplier and the newcomer. Subsequent to
accepting a sum of r = d β bits from suppliers, the
newcomer stores α bits and turns into another storage node.
It is required that after any rounds of repairs, the MDS
property that any k coded blocks suffice to recover the first
information object dependably holds. In other words, the
information collector can associate with not just the storage
nodes that get information specifically from the source, yet
the storage nodes repaired from newcomers in repairs too.
Additionally, the weights of edges joined to the source or
the information collector are all set to be infinity.

 Along these lines, the repair issue in the storage system
can be deciphered as a multicast issue in the data flow
chart, where the source is multicasting information to all

conceivable information collectors. It is understood in the
multicast issue that the most extreme multicast rate
approaches the base cut separating the source from any
receivers, and this rate can be accomplished through
network coding [6]. Accordingly, it can be demonstrated
that the MDS property holds after any rounds of repairs, in
the event that them in-cut in the data flow diagram is no
less that the size of first information object. By computing
the base min-cut in the data flow diagram, given d and β we
can determine the base estimation of α, and afterward we
acquire the trade-off curve in the middle of α and the
aggregate bandwidth utilization r.

2. Minimum-storage regenerating codes and minimum-
bandwidth regenerating codes

 The codes that accomplish that the min-cut in the data
flow diagram measures up to the information object is
called regenerating codes. Given the trade off between
bandwidth r and storage α , two unique instances of
regenerating codes interest us most, which compare to the
base storage space required at storage nodes and the base
aggregate bandwidth utilization in the repair, respectively.

 The regenerating codes that accomplish the base storage
in storage nodes is called Minimum Storage Regenerating
(MSR) codes, where

(αMSR, rMSR) = ሺ	ெ
௞

,	 ௌ

௞ሺௗି	௞ାଵሻ
) (1)

Notice that in above equation (1) the α equivalents to the
size of coded blocks of traditional MDS codes, and in this
manner MSR codes can be viewed as MDS codes. Then
again, since

r =
ௌ

௞ሺௗି௞ାଵሻ
 →

ெ

௞
 as d→∞, (2)

MSR codes expend bandwidth in the repair around the
same as the amount of one coded block, while traditional
MDS codes use bandwidth that equivalents the size of k
coded blocks. In this sense, MSR codes spare a significant
measure of bandwidth in the repair.

 The other great focuses in the trade-off in the middle of
storage and bandwidth is called Minimum Bandwidth
Regenerating (MBR) codes, where

(αMBR, rMBR)=(
ଶௌ

௞ሺଶௗି௞ାଵሻ
, ଶௌ

௞ሺଶௗି௞ାଵሻ
) (3)

In above equation (3) MSR codes accomplish the base
bandwidth utilization among regenerating codes. Despite
the fact that MBR codes require more storage than MSR
codes, the newcomer just needs to get precisely the
measure of information it needs to repair, and the

bandwidth and storage both join to
ெ

௞
 when d is sufficiently

large.

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1990

 To actualize regenerating codes, the least difficult way
(however not as a matter of course the most efficient way)
is to utilize random linear coding [7] which is motivated
by network coding. Partitioning the first information object
into k blocks, a coded block created by random linear
coding is an random linear combination of the k blocks.
The encoding operations are performed on a Galois field
GF(2௤). As a Galois field size of 2଼ relates to a byte in the
PC, q is generally set to be an essential times of 8 to make
encoding operations advantageous. Given any k coded
blocks and their coding coefficients, the decoding
operations are simply solving corresponding linear system
with k unknowns (i.e., unique blocks) and k equations. At
the point when q is sufficiently large, for example, 16 or
32, any k coded blocks can be decoded with a high
probability.

 Then again, the randomized development of regenerating
codes can experience the effects of a significant
computational complexity nature, particularly when
parameters are not legitimately selected [8]. In additional,
by no methods the randomized regenerating codes can
promise to repair information precisely as the lost
information. Far and away more terrible, even an large
Galois field cannot guarantee that any k coded blocks are
decodable, however just with a high probability, because of
the randomized coefficients. The repairs numbers, in any
case, cannot be effortlessly constrained, proposing that after
a substantial number of repairs information trustworthiness
cannot be kept up, as the randomness accumulates step by
step in coded blocks.

 Therefore, it is important to find explicit development of
regenerating codes, particularly for MSR and MBR codes.
Further, it is require that the lost block can be repaired
precisely given the explicit development.

3. Exact regenerating codes

 The most vital device used to build exact regenerating
codes is interference alignment, which is at first proposed
for wireless communication. The fundamental thought of
interference alignment is that the undesired vectors can be
wiped out by adjusting them onto the same linear subspace.
Figure 5 outlines how interference alignment serves to
accomplish careful regenerating codes.

 We assume that in Fig. 5 information are encoded by
(n=4, k=2, d=3) MSR codes, i.e., any two of the four nodes
can recover the first file. In every storage node, each coded
block contains two coded fragments, for example, (A1, A2)
in the storage node which has failed. To recover A1 and A2,
the newcomer contacts 3 storage nodes as suppliers and
downloads half of a coded block, i.e., a coded portion from
every supplier to accomplish the bandwidth utilization of
MSR codes. Notice that every supplier claims coded
fragments containing parts of B1 and B2, which are
undesirable to the newcomer. To delete B1 and B2, every
supplier can send a fragment in which B1 and B2 are
adjusted onto the same linear subspace of B1+ B2.
Obviously, B1+B2 can be dispensed with as one obscure

and A1 and A2 can be decoded by explaining three
mathematical statements with three unknowns.

 Concerning precise MBR codes, Rashmi et al. [9]
proposed a Product-Matrix development which has the
capacity explicitly build (n ,k, d) precise MBR codes on a
finite field of size n or higher with any decisions of (n, k, d)
if k ≤ d ≤ n. The Product-Matrix development produces
vector MBR codes such that a coded blocks contains
various coded fragments, much the same as the illustration
appeared in Fig.5.

 With respect to correct MSR codes, the decisions of
parameters turn out to be more complicated. Suh and
Ramchandran [10] proposed an explicit development of
scalar correct MSR codes where d ≥ 2k - 1, over a finite
field of size no less than 2(n - k). Rashmi et al. [9] enhanced
the decisions of parameters such that d ≥ 2k - 2, by
developing correct MSR codes utilizing the Product-Matrix
development, with a bigger finite field of size at any rate
n(d- k + 1). In Ref. [11], Shah et al. had demonstrated that
no scalar correct MSR codes exist when d ˂ 2k - 3.

Fig. 5 A case of (4,2,3) precise MSR codes.

 Cadambe et al. [12] and Suh and Ramchandran [13]
demonstrated that any decisions of (n, k, d)could be
accomplished asymptotically when building vector correct
MSR codes, as the field size goes to infinity. Developing
regenerating codes on an large finite field is illogical
because of its overwhelming encoding/decoding overhead.
Papailiopoulos and Dimakis [14] demonstrated that (n=k +
2, k, d = k +1) vector correct MSR codes can be developed
explicitly, consolidating interference alignment and
Hadamard matrices.

 Since the correct repair makes much more sense for the
systematic part than the parity part of exact regenerating
codes, we can build hybrid regenerating codes that just
support the correct repair of the systematic part, while the
parity part is still repaired by the functional repair. Wu [15]
developed the (n, k, d = k+1) hybrid vector MSR codes
when 2k ≤ n, where the field size is more prominent
than	2	ሺଶ௞ିଵ

ଶ௡ିଵሻ. Tamo et al. [16] and Cadambe et al. [17]
both proposed (n, k, d =n-1) hybrid MSR codes for
arbitrary k and n.

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1991

4. Cooperative regenerating codes

In some storage systems, for example, Total Recall [18],
keeping in mind the end goal to prevent unnecessary
repairs caused by temporary node departures, the system
repairs nodes which have failed in group when the quantity
of failed node numbers achieves a threshold limit. Hu et al.
[19] first found that if newcomers can collaborate, there
exist cooperative regenerating codes that accomplish a
superior trade-off curve in the middle of bandwidth and
storage. As yet examining the min-cut in the data flow
diagram, Hu et al. [19] demonstrated that (n, k, d = n-t,
t)randomized Minimum Storage Cooperative Regenerating
(MSCR) codes can achieve the bandwidth utilization of
ெ

௞
	. ௡ିଵ
௡ି௞

 with t suppliers (n- t ≥ k). Notice that the

bandwidth utilization is free of the number of suppliers.

 A more broad consequence of the bound of bandwidth
utilization is demonstrated that per newcomer

(αMSCR, βMSCR) = (
ெ

௞
, ெ
௞
, ௗା௧ିଵ
ௗା௧ି௞

) [20] [21] (4)

and

(αMBCR, βMBCR) =

 (
ெ

௞
, ଶௗା௧ିଵ
ଶௗା௧ି௞

, ெ
௞
, ଶௗା௧ିଵ
ଶௗା௧ି௞

) [21] (5)

ShumandHu [22] proposed an explicit development of (n,
k, d = k, t = n- k) correct MBCR codes. Wang and Zhang
[23] demonstrated that with respect to every single
conceivable estimation of (n, k, d, t), there exist explicit
developments of correct MBCR on a field of size at any
rate n. Then again, when d= k ≠ n-t, (n, k, d, t)scalar MSCR
codes can be constructed [20]. Le Scouarnec [24] talked
about the development of correct MSCR codes with some
different decisions of parameters when d ≥k = 2. The
presence of correct MSCR codes with different estimations
of parameters still remains an open challenge.

5. Repair-by-transfer regenerating codes

 The regenerating codes we have said above require
suppliers to encode their information to adjust vectors in a
specific linear subspace and the newcomer to encode got
information to dispense with undesired parts. The
arithmetic operations performed on a finite field can be
costly, if the field size is vast. In this manner, the cloud
storage system will support the repair-by-transfer property
that in the repair no arithmetic operations are required at
suppliers. With the repair-by-transfer property, the disk I/O
overhead can be insignificant since just information
required by the newcomer will be perused from suppliers.
Additionally, the storage node then can have no insight,
such that its usefulness can be actualized by implemented
with a minimal cost.

 A few decisions of parameters have been considered to
build the corresponding repair-by-transfer regenerating

codes. Shum and Hu [25] and Hu et al. [26] developed (n, k
=2,d = n-1)and (n, k = n-2,d = n-1) functional repair-by-
transfer MSR codes, individually. Then again, (n, k = n-2,d
= n-1) correct MBR codes can be built over a finite field of
size 2 [27]. The presence of correct regenerating codes
remains an open issue with respect to most different
decisions of parameters. The main known result is that if d
≥ 2 and t ≥ 2, any (n, k, d, t) linear correct MBCR codes
cannot accomplish the repair-by-transfer property [23].

 All things considered, Rashmi et al. [28] proposed an
instinctive graph based development of repair-by-transfer
correct MBR codes, where any missing block must be
repaired from its immediate neighbours in the graph.
Fractional repetition codes are utilized in the development
such that immediate neighbours have the same fragment
and the newcomer just needs to get replicas of the
fragments from its neighbours to repair itself, where no
arithmetic operations are required at suppliers, as well as at
the newcomer also. It is demonstrated that any (n, k, d = n-
1)MBR codes can be developed exceptionally with this
technique, n > k.

 Despite the fact that repair-by-transfer regenerating
codes have the capacity to accomplish the base disk I/O
overhead, just some specific decisions of parameters have
examples of relating regenerating codes as such. By and by,
cloud storage systems can have a wide range of parameter
decisions because of their own necessities. Therefore, it is
desirable that erasure coding can achieve low disk I/O
overhead with an extensive variety of parameter decisions,
regardless of the possibility that a few properties, for
example, the MDS property or the storage efficiency, will
be sacrificed.

6. Regenerating codes for pipelined repair

 Aside from some specific decisions of parameters that
have relating occurrences of repair-by-transfer regenerating
codes, most cases of regenerating codes oblige suppliers to
convey linear mixes of their coded blocks to the newcomer.
As it were, suppliers need to peruse the greater part of their
information despite the fact that the amount of information
to be conveyed covers just a little part. In this sense, despite
the fact that the bandwidth utilization can be diminished to
the ideal by regenerating codes, the disk I/O increments
with the number of suppliers. As the number of suppliers
can be much bigger than k, the disk I/O overhead with
regenerating codes will not be enhanced, however turn out
to be much severer than MDS codes.

 Clearly, as the disk I/O overhead is reliant with the
number of suppliers at the time of the repair, the disk I/O
can be spared if the number of suppliers is decreased while
keeping up alternate properties of regenerating codes,
particularly the bandwidth ideal utilization. To accomplish
this objective, Li et al. [29] proposed a pipelined repair
with minimum storage regenerating codes. The guideline of
pipelined repair is that suppliers of successive newcomers
are chosen to be overlapped, in light of the fact that any k
or more than k distinctive suppliers are sufficient in the

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1992

repair. Consequently, sequential repairs can be pipelined, as
appeared in Fig. 6. Still, a newcomer joins when there is
one disk failure, yet newcomers will not be completely
repaired in only one however numerous rounds of repairs
and distinctive newcomers can get and gather information
from suppliers at the time of the repair. After every round
of repair, the "eldest" newcomer will contact enough
suppliers and "graduate" to become a storage node.

 The most significant benefit of pipelined repair is the
lessening of suppliers in the repair. For instance in Fig. 6,
the number of suppliers can be decreased by 67%.
Actually, the free (n, k, d)regenerating codes for the
pipelined repair can diminish the number of taking part
nodes to as few 2√݀ ൅ 1 െ 1	in which only √݀ ൅ 1 െ 1 are
suppliers, while as yet keeping up the same bandwidth
utilization of (n ,k, d) minimum-storage regenerating
codes. It is shocking to find that the number of suppliers
can be even not as much as k, the length of the newcomer
has the capacity get information from in any event d
suppliers before its "graduation". The (n, k, d, t)
cooperative pipelined regenerating codes, which can be
viewed as a generalization of free pipelined regenerating
codes, have been talked about in Ref. [29], which require

ඥݐሺ݀ ൅ ሻݐ െ ݐ suppliers while keeping up the bandwidth
utilization of (n, k, d, t) cooperative regenerating codes.

 The overhead brought by the pipelined repair is the
storage space required by partially repaired newcomers, as
newcomers must be completely repaired after different
rounds of repairs. The extra storage overhead equals the
storage space used by ඥሺ݀ ൅ ݐሻݐ െ ݐ storage nodes.
Subsequently, the storage efficiency will be lessen.

 However, it can be demonstrated that this overhead is
minor in practical cloud storage systems [29]. In addition,
each block in completely repaired new comers can in any
case keep up the MDS property, despite the fact that the
number of suppliers in the repair can be not as much as k.

Fig.6 A sample of pipelined repairs with five continuous
newcomers.

IV. SAVING THE DISK I/O OVERHEAD: LOCALLY

REPAIRABLE CODES

 Regenerating codes minimize the repair overhead in the
axis of bandwidth utilization. Then again, the minimization
of bandwidth utilization does not as a matter of course
minimize the amount of information read by suppliers in
the repair. Aside from repair-by-transfer regenerating
codes, suppliers need to peruse all coded blocks they store
and to perform arithmetic operations, with a specific end
goal to encode them into the information required by the
newcomer.

 Like the MDS property that any k coded blocks can
recover the first file, regenerating codes support verifiably a
property in the data flow chart that a newcomer ought to
have the capacity to finish the repair by reaching any k
accessible storage nodes as suppliers. Despite the fact that
the MDS property goes for information integrity ,this
property is not all that important for the cloud storage
system, in light of the fact that the MDS property has as of
now ensured that k coded blocks can achieve a repair by
decoding the first file first and afterward encoding the first
file into the specific coded block. On the off chance that
this property can be casual, the corresponding erasure
coding may be benefited by different properties, e.g., a
repair-by-transfer property can be effectively accomplished
in Ref. [28].

 Hence, in the event that it is conceivable to design
erasure coding that any specific coded block can be
repaired by some specific coded blocks, the disk I/O
overhead in the repair can be significantly lessened, in light
of the fact that just a little number of suppliers will be
reached by the newcomer. Really, we can watch the pattern
of this property from regenerating codes. Since in pipelined
repairs suppliers of back to back newcomers must be
overlapped, in every repair storage nodes that have as of
late seemed should not be chosen as suppliers.
Consequently, the number of suppliers can be significantly
spared. Aside from regenerating codes, Li et al. [29]
observed that random linear codes could likewise be
applied in the pipelined repair. In this section, we examine
the erasure codes that are all the more explicitly optimized
towards this property.

 In this paper, we order the erasure coding procedures that
accomplish this property as locally repairable codes and
present three representative groups of the locally repairable
codes: hierarchical codes, self-repairing codes, and simple
regenerating codes. At that point we audit the analytical
results of the trade-off between the disk I/O overhead and
handling against failures.

1. Hierarchical codes

 While a lost replica must be repaired from the same
replica and a lost block coded by MDS codes can be
repaired from any k coded blocks, hierarchical codes[30]
present another flexible trade-off in the middle of

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1993

replication and MDS codes, which decrease the number of
blocks used with a sacrifice of storage overhead.

 As the name recommends, hierarchical codes are built
hierarchically. Figure7 outlines a sample of the hierarchical
development of hierarchical codes. In Fig. 7a, an example
of (2,1) hierarchical codes are developed which creates two
efficient blocks and one parity block. Given F1 and F2 as
first blocks, B 1, B2 and B3 are linear mixes of their
immediate neighbours, where just B3, of degree 2, is the
parity block. Any two of B1;B2; and B3 have two edge-
disjoint paths to F1 and F2, recommending that any two of
them can repair the other one.

 In Fig. 7b, (4,3) hierarchical codes are built from (2,1)c
hierarchical odes, repeating the structure of (2,1)
hierarchical codes twice and embeddings one more block
B7 joined with every single unique blocks. Clearly, to repair
B7, the greater part of the four unique blocks are required.
On the other hand, with respect to the coded blocks in the
first structures of (2,1) hierarchical codes, their repair
degree, i.e., the number of blocks required to repair a
specific coded block, stays to be two.

 In the route portrayed over, an occurrence of large
hierarchical codes can be built regulated from examples of
smaller hierarchical codes. The repair degrees of coded
blocks shift from 2 to k. Duminuco and Biersack [30]
demonstrated that to repair one coded block, most coded
blocks can be repaired by getting to just two coded blocks.
Despite the fact that the most worst case stays to be k, just a
little proportion of coded blocks fits in with this case.
Strictly when countless blocks have been lost, the most
worst case turns out to be significantly detectable.

Fig.7 The hierarchical structure of hierarchical codes. This
example is originally shown in Ref. [30].

 By applying correct regenerating codes in the base
structure of hierarchical codes, Huang et al. [31] proposed a
group of ER-Hierarchical codes, which consolidate the
upsides of hierarchical codes and regenerating codes, such
that both a little bandwidth utilization and a low repair
degree can be accomplished.

 Hierarchical codes offer a low repair degree all things
considered. Nonetheless, the MDS property cannot be kept
up. Given an example of (k, h) hierarchical codes, not all
gatherings of h failures can be handled. Far more atrocious,
since the development of hierarchical codes relies on upon
the hierarchical structure of the specific example, the
capacity of handling failures cannot be anticipated simply
taking into account these two parameters. Despite the fact
that the structure of the hierarchical codes is given, the
capacity of handling failures still cannot be portrayed by
explicit equations.

2. Self-repairing codes

 Not quite the same as hierarchical codes in which the
repair level of a coded block may shift from 2 to k, self
repairing codes can accomplish a steady repair degree, free
of any specific missing block. In addition, depending upon
what number of coded blocks are missing, the repair level
of a regular coded block can be as low as 2 or 3.

 Oggier and Datta [32] proposed Homomorphic Self
Repairing Codes (HSRC), the first development of self
repairing codes, taking into account linear polynomials.
Review that Reed-Solomon codes, an ordinary group of
MDS codes, is defined by polynomial

p(X) = ∑ ௜݋
௞
௜ିଵ 	ܺ௜ିଵ (6)

over a finite field. A linearly polynomial is defined

p(X) = ∑ ௜݌
௞ିଵ
௜ୀଵ ܺ௤

೔
 (7)

over a finite field of size 2௠, such that p(ua + vb) = up(a) +
vp(b). Thusly, any coded block can be displayed as a linear
mixes of a few sets of no less than two other coded blocks.
This property does not just give each coded block a low
repair degree, yet empowers parallel repairs of various
missing blocks also, as newcomers can have diverse
options of suppliers to keep away collisions.

 Aside from developing linearly polynomials, another
group of self-repairing codes exists, which can be
manufactured utilizing projective geometry [33]. Projective
geometry Self-Repairing Codes (PSRC) hold the properties
of homomorphic self-repairing codes, furthermore can be
built as efficient codes, significantly simplifying decoding
methods.

 Since self-repairing codes are built over a finite field of
size 2௠, the encoding and decoding operations should be
possible by XOR operations. In this manner, they
accomplish a high computational efficiency. Then again,

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1994

self-repairing codes cannot keep up the MDS property,
unless k = 2 for PSRC. On the other hand, the strength
likelihood of self-repairing codes is near that of MDS
codes.

3. Simple regenerating codes

 In spite of the fact that both self-repairing codes and
hierarchical codes can accomplish a low repair degree, their
flexibilities to the failures of storage nodes are
probabilistic, i.e., there is no ensure that a sure number of
coded blocks can recover the first file. Subsequently, the
storage system must test the coefficients of coded blocks
before really getting to the relating suppliers. By and by,
the storage system have the capacity to cease themselves
from this operation with basic regenerating codes[34], while
as yet keeping up a low repair degree and accomplishing
the correct repair.

 An occurrence of (n, k, d)simple regenerating codes
applying so as to recover codes can be developed XOR
operations over MDS coded blocks. We take the
development of (4, 2, 2)simple regenerating codes as an
illustration in Fig. 8. The first file is separated into four
fragments, and 8 coded fragments (௜ܺ ௜ݕ , , i = 1,...,4) are
generated by two examples of(4,2)MDS codes. Node i
stores ݔ௜ and ݕሺ௜ାଵሻ	௠௢ௗ	ସ , as well as the XOR of
ସ	௠௢ௗ	ሺ௜ାଶሻݔ and ݕሺ௜ାଶሻ	௠௢ௗ	ସ	 . Along these lines, any
fragment can be repaired by getting to two different
fragments in Node ((i-1) mod 4) and Node ((i+1) mod 4)

 However "regenerating codes" are incorporated into the
name, simple regenerating codes don't accomplish the cut-
set bound of regenerating codes and in this way cannot be
classified as regenerating codes. Then again, in (n, k,
d)simple regenerating codes, every node can be repaired by
accessing d +1 specific nodes, where d can be less than k
rather than no not as much as k in regenerating codes. The
newcomer repairs every fragments by XORing comparing
two fragments acquired from two different nodes, and in
this way the repair is correct. This disk I/O overhead and

the bandwidth utilization is
ெ

௞
 .
ଶሺௗାଵሻ

ௗ
 .

 It is anything but not difficult to find out that any two
nodes in Fig.8b can recover the first file. Nonetheless,

every node ought to store coded fragments size of
ଵ

௞
 of the

first file, in addition to one more parity fragment. In this
manner, (n, k, d) simple regenerating codes bring about

extra storage overhead by
ெ

௞
 .

௡

ௗ
 . Compared with self

repairing codes and hierarchal codes , the resilience against
failures and storage overhead of simple regenerating codes
gets to be predictable.

Fig. 8 An example Ref. [34] of (4,2,2) basic recovering codes.

4. Trade-off between the failure tolerance and the repair
degree

 Locally repairable codes guarantee an exceptionally
encouraging property of a low repair degree, suggesting
low disk I/O overhead in the repair. Microsoft has their
own particular occasion of locally repairable codes which
are deployed in its cloud storage system, Windows Azure
Storage [5]. Then again, it has been demonstrated that none
of the locally repairable codes can safeguard the MDS
property. There was no essential comprehension of the
failure handling and the repair degree, until Gopalan et al.
[35] found a tight bound of the repair degree d in wording
n, k, and the minimum distance of the codes D. Naturally,
the first file can be recovered from any n - D + 1 coded
blocks. Hence, the distance of MDS codes is clearly n- k +
1. Gopalan et al. [35] demonstrated that in any (n, k,
d)codes with the distance D which is minimum,

n-k ≥ ቒ௞
ௗ
ቓ + D - 2 (8)

Given this trade-off, it is anything but not difficult to find
out that the repair level of MDS codes cannot be not as
much as less than k.

 Utilizing the bound above, Sathiamoorthy et al. [2]
pointed out that there existed (n, k, d) locally repairable
codes with the logarithmic repair degree r = log k, and the
minimum distance

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1995

D = n -(1 + ߪ௞)k +1, where ߪ௞=
ଵ

௥
 -
ଵ

௞
 . (9)

Explicitly, they proposed(16,6,5)locally repairable codes,
which have been executed in HDFS-Xorbas, an open
source module that keeps running above HDFS (Hadoop
File System). Facebook has begun a transitioning
deployment of HDFS RAID, an HDFS module that
executes (10,4)Reed-Solomon codes. As appeared in Fig. 9,
the (16, 6, 5)locally repairable codes are built on the (10,
4)efficient Reed-Solomon codes, including two extra
neighbourhood parity blocks.

 Accordingly, HDFS-Xorbas is good with the current
HDFS RAID, and the system can be moved from HDFS
RAID to HDFS-Xorbas by essentially including the two
neighbourhood parity blocks. The two nearby parity blocks
are linear combinations of the first and last five efficient
blocks, individually. Moreover, the coefficients are
developed such that the two neighbourhood parity block
and the four Reed-Solomon (non-efficient) parity blocks
are linearly dependent, i.e., S1 + S2 + S3 = 0. Therefore,
any one block can be displayed to as a component of five
different blocks, and in this manner can be repaired by five
suppliers just. Tests demonstrate that compared with HDFS
RAID, approximately half disk I/O and network traffic in
the repair have been spared, separately. It is likewise
demonstrated that the distance of the (16,10,5)locally
repairable codes is 5, accomplishing the bound of the
minimum distance with the present repair degree.
Papailiopoulos and Dimakis [36] examined the trade-off
between repair degree, the minimum distance, and the size
of coded blocks α. They demonstrated that the minimum
distance is limited as

D ≤ n - ቒெ
ఈ
ቓ - ቒ ெ

ௗఈ
ቓ + 2. (10)

Fig. 9 The (16, 6, 5) locally repairable codes that are developed in
Ref. [2] and executed in HDFS-Xorbas. S3 will be repaired by S1

AND S2.

An intriguing viewpoint in this bound is that we can all the
while keep up the MDS property and accomplish a
arbitrarily low repair degree. Each case of simple
regenerating codes is a sample of (n, k, d)locally repairable
codes where

α = (1 +
ଵ

ௗ
)
ெ

௞
 (11)

V. CONCLUDING REMARKS

 All through this paper, we give a diagram of the
development of coding procedures for cloud storage
systems. The way of commodity hardware in the cloud and
the huge number of storage devices convey challenges to
the outline of cloud storage systems. By introducing
erasure coding from regenerating codes to locally
repairable codes, we have seen a pattern in the examination
of erasure codes for cloud storage, that the configuration
objective step by step exchanges from information integrity
to resource overhead, and from the bandwidth resource to
some other scarcer resource for the cloud storage system,
for example, calculation and disk I/O overhead. To spare
computational resources, the development of correct
regenerating codes has first been considered. The correct
repair serves to keep up the efficient erasure codes in the
storage system, such that no decoding operations are
required to recover the first file. Additionally, the repair-
by-transfer regenerating codes help to accomplish a repair
process without math operations on both the newcomer and
supplier.

 To spare disk I/O overhead, locally repairable codes are
proposed such that meeting a little number of disks ought to
be sufficient to perform a repair process. What's more,
some locally repairable codes, for example, simple
regenerating codes, bolster the look-up repair that the lost
information can be created from a specific block of
information put away on some specific disks. The repair-by
transfer property is considerably more grounded in light of
the fact that just the same information to be repaired will be
gotten to from different disks.

 Indeed, even with the late advances, there are still some
open issues to be researched. In the setting of regenerating
codes, there are still a few decisions of parameters with
which the presence and the development of regenerating
codes are obscure in this way. Furthermore, regenerating
codes for correct pipelined repair likewise remains an open
issue. As for locally repairable codes, the trade-off between
the repair degree and storage overhead has not been built
up clearly. Plus, there are some other reasonable
considerations that can be talked about mutually with the
coding procedure, for example, geological nature of various
data centres in the cloud. Given that the cloud storage
systems scales all around in numerous data centres,
bandwidth, calculation, and the relating geographical
heterogeneities should be carefully discussed.

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1996

REFERENCES

[1] Brandon Butler. (2013, jan) Gartner: Top 10 cloud storage providers.
[Online]. http://www.networkworld.com/article/2162466/cloud-
computing/gartner-top-10-cloud-storage-providers.html

[2] A. Loukissas, and A. Vahdat, M. Al-Fares, "A scalable, commodity
data center network architecture," in ACM SIGCOMM 2008 , New
York, NY, USA, 2008, pp. 63-74.

[3] P. B. Godfrey, M. J. W. Y. Wu, and A. G. Dimakis, "Network coding
for distributed storage," IEEE Trans. Inform. Theory, vol. 56, no. 9,
pp. 4539 - 4551, sept 2010.

[4] I. Reed and G. Solomon, "Polynomial codes over certain," Journal of
the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp.
300-304, 1960.

[5] Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin, Cheng Huang, "Erasure
coding in Windows Azure Storage," in USENIX Annual Technical,
boston,MA, 2012.

[6] R. W. Yeung, and N. Cai S.-Y. R. Li, "Linear network coding," IEEE
Trans. on Inform. Theory, vol. 49, no. 2, pp. 371-381, 2003.

[7] R. Koetter, M. Medard, D. Karger, and M. Effros, T. Ho, "The
benefits of coding over routing in a randomized setting," in IEEE
International Symp. Inform. Theory, 2003, pp. 442-442.

[8] A. Duminuco and E. Biersack, "A practical study of regenerating
codes for peer-to-peer backup systems," in Distributed Computing
Systems, 2009. ICDCS '09. 29th IEEE International Conference ,
Montreal, QC, 2009, pp. 376 - 384.

[9] N. Shah, and P. Kumar, K. Rashmi, "Optimal exactre generating
codes for distributed storage at the MSR and MBR points via a
product-matrix construction," IEEE, vol. 57, no. 8, pp. 5227-5239,
2011.

[10] C. Suh and K. Ramchandran, "Exact-repair MDS code construction
using interference alignment," IEEE Trans. on Inform. Theory, vol.
57, no. 3, pp. 1425-1442, 2011.

[11] K. V. Rashmi, P. V. Kumar, N. B. Shah, "Interference alignment in
regenerating codes for distributed storage: Necessity and code
constructions," IEEE Trans. on Inform. Theory, vol. 58, no. 4, pp.
2134-2158, 2012.

[12] S. A. Jafar, and H. Maleki, V. R. Cadambe. (2010) Distributed data
storage with minimum storage regenerating codes - Exact and
functional repair are asymptotically equally efficient. [Online].
http://arxiv.org/abs/1004.4299

[13] C. Suh and K. Ramchandran. (2010) On the existence of optimal
exact-repair MDS codes for distributed storage. [Online].
http://arxiv.org/abs/1004.4663

[14] D. S. Papailiopoulos and A. G. Dimakis, "Distributed storage codes
through Hadamard designs," in Information Theory Proceedings
(ISIT), 2011 IEEE International Symposium, St. Petersburg, 2011,
pp. 1230 - 1234.

[15] Y. Wu, "A construction of systematic MDS codes with minimum
repair bandwidth," IEEE Trans. on Inform. Theory, vol. 57, no. 6, pp.
3738-3741, 2011.

[16] Z. Wang, and J. Bruck, I. Tamo, "MDS array codes with optimal
rebuilding," in IEEE Symposium on Information Theory (ISIT, St.
Petersburg, 2011, pp. 1240-1244.

[17] C. Huang, S. A. Jafar, and J. Li V. R. Cadambe. (2011) repair of
MDS codes in distributed storage via subspace interference
alignment. [Online]. http://arxiv.org/abs/1106.1250

[18] K. Tati, Y.-C. Cheng, S. Savage, and G. M. R. Bhagwan, "Total
recall: System support for automated availability management," in
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2004.

[19] Y. Xu, X. Wang, C. Zhan, and P. Li, Y. Hu, "cooperative trecovery
of distributed storage systems from multiple losses with network
coding," IEEE Journal on Selected Areas in Communications, vol.
28, no. 2, pp. 268-276, 2010.

[20] K. Shum, "Cooperative Regenerating Codes for Distributed Storage
Systems," in Communications (ICC), 2011 IEEE International
Conference on, Kyoto, 2011, pp. 1-5.

[21] A. Kermarrec and N. Le, "Repairing multiple failures with
coordinated and adaptive regenerating codes," in IEEE International
Symposium on Network Coding (NetCod), Beijing, 2011, pp. 1-6.

[22] K. Shum and Y. Hu, "Exact minimum-repair-bandwidth cooperative
regenerating codes for distributed storage systems," in Information
Theory Proceedings (ISIT), 2011 IEEE International Symposium on,
St. Petersburg, 2011, pp. 1442 - 1446.

[23] A. Wang and Z. Zhang. (2012) Exact cooperative regenerating codes
with minimum-repair-bandwidth for distributed storage. [Online].
http://arxiv.org/abs/1207.0879

[24] N. Le Scouarnec, "Exact scalar minimum storage coordinated
regenerating codes," in Information Theory Proceedings (ISIT), 2012
IEEE International Symposium on, Cambridge, MA, 2012, pp. 1197 -
1201.

[25] K. Shum and Y. Hu, "Functional-repair-by-transfer regenerating
codes," in Information Theory Proceedings (ISIT), 2012 IEEE
International Symposium on, Cambridge, MA, 2012, pp. 1192 - 1196.

[26] P. P. C. Lee, and K. W. Shum, Y. Hu. (2012) Analysis and
construction of functional regenerating codes with uncoded repair for
distributed storage systems. [Online].
http://arxiv.org/abs/1208.2787v1

[27] K. V. Rashmi, P. V. Kumar, N. B. Shah, "Distributed storage codes
with repair-by-transfer and nonachievability of interior points on the
storage-bandwidth tradeoff," IEEE Trans. on Inform. Theory, vol. 58,
no. 3, pp. 1837-1852, 2012.

[28] N. Shah, and P. Kumar, K. Rashmi, "Explicit construction of optimal
exact regenerating codes for distributed storage," in Communication,
Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton
Conference on, Monticello, IL, 2009, pp. 1243 - 1249

[29] X. Wang, and B. Li, J. Li, "Cooperative pipelined regeneration in
distributed storage systems," in INFOCOM, 2013 Proceedings IEEE,
Turin, 2013, pp. 2346 - 2354.

[30] A. Duminuco and E. W. Biersack, "Hierarchical codes: A flexible
trade-off for erasure codes in peer-to-peer storage systems, Peer-to-
Peer Networking and Applications," in Peer-to-Peer Computing ,
2008. P2P '08. Eighth International Conference on, Aachen, 2008,
pp. 89-98.

[31] E. Biersack, and Y. Peng, Z. Huang, "Reducing Repair Traffic in P2P
Backup Systems: Exact Regenerating Codes on Hierarchical Codes,"
ACM Transactions on Storage (TOS), vol. 7, no. 3, p. 10, 2011.

[32] F. Oggier and A. Datta, "Self-repairing homomorphic codes for
distributed storage systems," in INFOCOM, 2011 Proceedings IEEE,
shanghai, 2011, pp. 1215 - 1223.

[33] F. Oggier and A. Datta, "Self-repairing codes for distributed
storage—A projective geometric construction," in Information
Theory Workshop (ITW), 2011 IEEE, Paraty, 2011, pp. 30-34.

[34] Jianqiang Luo, A.G. Dimakis, and Papailiopoulos, D.S Cheng Huang,
"Simple regenerating codes: Network coding for cloud storage," in
INFOCOM, 2012 Proceedings IEEE, Orlando, FL, 2012, pp. 2801 -
2805.

[35] C. Huang, H. Simitci, and S. Yekhanin, P. Gopalan, "On the Locality
of Codeword Symbols," Information Theory, IEEE Transactions on
(Volume:58 , Issue: 11), vol. 58, no. 11, pp. 6925 - 6934, aug 2012.

[36] D. S. Papailiopoulos and A. G. Dimakis, "Locally Repairable Codes,"
Information Theory, IEEE Transactions on, vol. 60, no. 10, pp. 5843
- 5855, may 2014.

Kiran P. Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1986-1997

www.ijcsit.com 1997

